Rabu, 05 Januari 2011

Komponen elektronika


Resistor

Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan diantara kedua salurannya sesuai dengan arus yang mengalirinya, berdasarkan hukum Ohm:
Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat diboroskan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, resistor harus cukup besar secara fisik agar tidak menjadi terlalu panas saat memboroskan daya.

Satuan

Ohm (simbol: Ω) adalah satuan SI untuk resistansi listrik, diambil dari nama George Simon Ohm. Biasanya digunakan prefix miliohm, kiloohm dan megaohm.

 Komposisi karbon

Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna dari harganya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, bahang dari solder dapat mengakibatkan perubahan resistansi yang tak dapat dikembalikan.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.

 Film karbon

Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar[1]. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu diantara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 volt[2].

 Film logam

Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang mempengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF[3].

 Penandaan resistor

Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.

 Identifikasi empat pita

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang pita kelima menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.
Warna
Pita pertama
Pita kedua
Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam
0
0
× 100


Cokelat
1
1
×101
± 1% (F)
100 ppm
Merah
2
2
× 102
± 2% (G)
50 ppm
Oranye
3
3
× 103

15 ppm
Kuning
4
4
× 104

25 ppm
Hijau
5
5
× 105
± 0.5% (D)

Biru
6
6
× 106
± 0.25% (C)

Ungu
7
7
× 107
± 0.1% (B)

Abu-abu
8
8
× 108
± 0.05% (A)

Putih
9
9
× 109


Emas


× 10-1
± 5% (J)

Perak


× 10-2
± 10% (K)

Kosong



± 20% (M)

 Identifikasi lima pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.

Resistor pasang-permukaan


Gambar ini menunjukan empat resistor pasang permukaan (komponen pada kiri atas adalah kondensator) termasuk dua resistor nol ohm. Resistor nol ohm sering digunakan daripada lompatan kawat sehingga dapat dipasang dengan mesin pemasang resistor.
Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334"
= 33 × 10.000 ohm = 330 KOhm
"222"
= 22 × 100 ohm = 2,2 KOhm
"473"
= 47 × 1,000 ohm = 47 KOhm
"105"
= 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100"
= 10 × 1 ohm = 10 ohm
"220"
= 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7"
= 4.7 ohm
"0R22"
= 0.22 ohm
"0R01"
= 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001"
= 100 × 10 ohm = 1 kohm
"4992"
= 499 × 100 ohm = 49,9 kohm
"1000"
= 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.                 

Transistor
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Cara kerja semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

 Cara kerja transistor

Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

 Jenis-jenis transistor

Simbol Transistor dari Berbagai Tipe


                                                                                                       

Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

 BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

 FET

FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.



Kondensator

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Kondensator atau sering disebut sebagai kapasitor adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad dari nama Michael Faraday. Kondensator juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
  • Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Lambang kondensator (mempunyai kutub) pada skema elektronika.
  • Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju.
Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika.
Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).
Kapasitor dalam rangkaian elektronik

Kapasitansi

Satuan dari kapasitansi kondensator adalah Farad (F). Namun Farad adalah satuan yang terlalu besar, sehingga digunakan:
  • Pikofarad (pF) =
  • Nanofarad (nF) =
  • Microfarad () =
Kapasitansi dari kondensator dapat ditentukan dengan rumus:
C=\epsilon_0\epsilon_r\frac{A}{d}
C : Kapasitansi
ε0 : permitivitas hampa
εr : permitivitas relatif
A : luas pelat
d :jarak antar pelat/tebal dielektrik
Adapun cara memperbesar kapasitansi kapasitor atau kondensator dengan jalan:
  1. Menyusunnya berlapis-lapis.
  2. Memperluas permukaan variabel.
  3. Memakai bahan dengan daya tembus besar.


Permitivitas Relatif Dielektrik
Keramik rugi rendah
7
Keramik k tinggi
50.000
Mika perak
6
Kertas
4
Film plastik
2,8
2,4
3,3
2,3
8
25
Elektrolit tantalum
35


 



Secara umum jenis kondensator dinamai menurut bahan dielektriknya, sehingga jika anda menemui kondensator keramik artinya bahan dielektrik dari kondensator tersebut adalah keramik, dst. dibawah ini macam-macam kondensator yang banyak ditemui di pasaran.

Jenis kondensator
1. Kondensator Keramik
Memiliki nilai kapasitansi antara 5 pF - 1 uF dengan toleransi ± 10% dan tegangan kerja 50 volt hingga ribuan volt, memiliki kesetabilan yang tinggi dan baik digunakan untuk frekwensi tinggi, biasanya memiliki bentuk fisik bulat pipih berwarna coklet muda atau hijau muda, juga tersedia dalam kemasan SMD
2. Kondensator Polyester ( Polyethylene Terephthalate )
Memiliki nilai kapasitansi antara 100 pF - 2 uF dengan toleransi ± 5% dan tegangan kerja maksimum 400 volt, memiliki kesetabilan yang cukup, biasanya memiliki bentuk fisik persegi empat dan berwarna hijau itulah sebabnya kenapa kondensator ini sering disebut sebagai greencaps, meskipun terkadang ada yang dibungkus dengan plastik warna merah maupun coklat. Kondensator ini biasa juga disebut dengan kondensator mylar. Pengembangan dari kondensator polyester adalah type metalized polyester film atau yang umum dikenal dengan kondensator MKT
3. Kondensator Polystyrene
Memiliki nilai kapasitansi antara 50 pF - 500 nF dengan toleransi ± 1% dan tegangan kerja maksimum 500 volt, memiliki kesetabilan yang sangat baik, biasanya memiliki bentuk fisik silinder. Sering digunakan untuk operasi tegangan tinggi.
5. Kondensator Polypropylene (MKP)
Memiliki nilai kapasitansi antara 1 nF - 100 uF dengan toleransi ± 5% dan tegangan kerja maksimum 900 volt, memiliki kesetabilan yang cukup.
6. Kondensator Kertas
Memiliki nilai kapasitansi antara 10 nF - 10 uF dengan toleransi ± 10% dan tegangan kerja maksimum 600 volt, memiliki kesetabilan yang lumayan, biasanya memiliki bentuk fisik persegi empat bening.
7. Kondensator Mika Perak
Memiliki nilai kapasitansi antara 5 pF
- 10 nF dengan toleransi ± 0.5% dan tegangan kerja maksimum 400 volt, memiliki kesetabilan yang sangat baik.
8. Kondensator Electrolit Aluminium (Elco)
Memiliki nilai kapasitansi antara 1 uF - 1 F dengan toleransi ± 50% dan tegangan kerja maksimum 400 volt terpolarisasi, memiliki kesetabilan yang cukup.
9. Kondensator Electrolit Tantalum
Memiliki nilai kapasitansi antara 1 uF - 2000 uF dengan toleransi ± 10% dan tegangan kerja maksimum 60 volt terpolarisasi, memiliki kesetabilan yang baik.
10. Kondensator Trimmer (TC)
Memiliki nilai kapasitansi antara 1 pF - 200 pF dengan toleransi ± 10% dan tegangan kerja maksimum 60 volt, memiliki kesetabilan yang cukup, termasuk golongan capasitor variabel, cara mangubah kapasitansinya dengan menggunakan obeng trim.

 

Berdasarkan kegunaannya kondensator dibagi dalam:
  1. Kondensator tetap (nilai kapasitasnya tetap tidak dapat diubah)
  2. Kondensator elektrolit (Electrolite Condenser = Elco)
  3. Kondensator variabel (nilai kapasitasnya dapat diubah-ubah)
Penandaan nilai kondensator

Ada dua metode yang digunakan sebagai penanda nilai kondensator, metode pertama adalah dengan menggunakan pita warna seperti halnya yang diterapkan pada resistor aksial dan metode kedua adalah dengan cara ditandai secara alfabet-numerik.
Penanda nilai kondensator dengan pita warna

Penandaan nilai kondensator dengan pita warna, biasanya diterapkan pada kondensator kertas, kondensator polikarbonat metal dan kondensator polyester, cara membaca nilainya dimulai dari pita warna paling atas lalu berangsur turun kebawah, kode warna yang digunakan mirip dengan kode warna pada resistor, tetapi dengan meninggalkan warna emas dan perak. Jumlah pita warna bisanya lima warna, jika ditemui hanya empat warna artinya pita warna yang menunjukkan tegangan kerja maksimum tidak disertakan, dalam kondisi seperti ini maka tegangan kerja yang diizinkan maksimum adalah sebesar 50 Volt.
Contoh, sebuah kondensator yang memiliki pita warna : Merah, Merah, Kuning, Hitam, Merah adalah bernilai 220000 pF 0% 250 V = 220 nF 0% 250 V. Cara membaca yang lebih mudah adalah: pita pertama, Merah, mempunyai harga 2 dan pita kedua, Merah, mempunyai harga 2, sehingga keduanya dihitung sebagai 22. Pita ketiga, kuning, mempunyai harga 104, yang berarti menambahkan empat nol dibelakang angka 22, sedangkan pita keempat, Hitam, merupakan kode untuk toleransi 0%, dan pita kelima Merah yang menunjukkan tegangan kerja maksimum 250V. Secara keseluruhan skema warna Merah, Merah, Kuning, Hitam, Merah memberikan nilai 220.000pF pada keakuratan 0% dengan tegangan kerja maksimum 250V. Dibawah ini adalah tabel warna yang dapat digunakan sebagai acuan.



 Membaca nilai kondensator penanda alfabet-numerik

Penandaan nilai kondensator dengan penanda alfabet-numerik merupakan metode yang paling sering digunakan, dimana nilai dari kondensator dicetak dengan menggunakan huruf dan angka pada badan kondensator. Penggunaan angka untuk menyatakan nilai kapasitansi dan tegangan kerja, sedangkan penggunaan huruf untuk menyatakan toleransi dan satuan.







Nomor Nilai Pertama Nilai Kedua Pengali Toleransi

Contohnya:
• Kode kondensator 562 J 100 V, artinya besarnya kapasitansi 56 x102 pF, kode J artinya besarnya toleransi 5% dan 100 V artinya tegangan kerja maksimum 100 Volt.
• 100 n J, artinya besarnya kapasitansi 100 nF dan kode J artinya besarnya toleransi 5%
• Kode kondensator 100 uF 50 V, artinya besarnya kapasitansi 100 uF dan besarnya tegangan kerja maksimum adalah 50 Volt.
Penanda Kondensator Keramik SMD
Kondensator keramik SMD terkadang ditandai dengan kode tertentu jika memungkinkan untuk ditandai, biasanya terdiri atas satu atau dua huruf dengan satu angka. Dimana huruf pertama menunjukkan pabrik pembuatnya (contoh : K untuk Kemet, dsb.), huruf kedua menunjukkan pecahan dan angkanya merupakan pengali (multiplier) dan nilai kapasitansinya dalam pF. Contoh : S3 berarti 4.7nF (4.7 x 10³ pf) pabrik pembuatnya tidak diketahui (tidak ditunjukkan), Contoh lain : KA2 artinya 100 pF (1.0 x 10² pF) pabrik pembuatnya adalah Kemet.






Kode Huruf Pecahan Kode Huruf Pecahan Kode Huruf Pecahan Kode Huruf Pecahan

Penanda Kondensator Elektrolit SMD

Kondensator elektrolit SMD biasanya ditandai dengan huruf dan angka yang menyatakan nilai kapasitansi (dalam pF) dan tegangan kerjanya (dalam Volt), misalnya. 106V artinya 10 µF 6V. Tetapi terkadang ada juga yang ditandai dengan kode yang terdiri dari satu huruf dan tiga angka. Dimana huruf menyatakan tegangan kerjanya, sedangkan 3 angka menyatakan kapasitansinya dalam pF (2 angka dan satu pengali).
Contoh, sebuah kondensator yang ditandai kode A475 artinya 4.7 m F 10V
475 = 47 x 10 5 pF = 4.7 x 10 6 pF = 4.7 m F



Kondensator Seri dan Paralel

Jika kondensator dihubungkan secara seri maka nilai kapasitansinya akan semakin mengecil, tetapi jika kondensator dihubungkan secara paralel maka nilai kapasitansinya akan semakin bertambah besar.
Persamaan untuk menghitung nilai kondensator setelah dihubungkan secara seri adalah :

Sedangkan persamaan untuk menghitung nilai kondensator setelah dihubungkan secara paralel adalah :
 
Dibawah ini adalah skema kondensator yang dihubungkan secara seri dan paralel
  
  
Kerusakan yang sering ditemui pada kondensator
  
Jenis Kerusakan Penyebab
Kertas Hubung singkat Kebocoran seal. Kejutan mekanik, termal atau perubahan-perubahan tekanan
Sirkuit terbuka Kejutan mekanik / thermal
Keramik Hubung singkat Pecahnya dielektrika karena kejutan atau getaran
Sirkuit terbuka Pecahnya sambungan
Perubahan nilai kapasitansi Elektroda perak tidak melekat benar pada perak
Film Plastik Sirkuit terbuka Kerusakan pada semprotan diujung, ketika fabrikasi atau asembeling
Elco Sambung singkat, karena bocor Hilangnya dielektrika. Temperatur tinggi
Kapasitansi mengecil Hilangnya elektrolit karena tekanan, kejutan mekanik atau temperatur
Sirkuit terbuka Pecahnya sambungan internal
Mika Hubung singkat Perpindahan perak disebabkan oleh kelembaban yang tinggi
Sirkuit terbuka Perak tidak menempel ke mika



                                                                        Countersy : id.wikipedia.org

0 komentar:

Posting Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Affiliate Network Reviews